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Abstract 

In this paper, we discuss different kinds of covariance matrix estimators and 

their behavior under the conditions of heterogeneity and high dimensions. 

Covariance matrix estimation that is well-conditioned matrix is very 

important procedure for many statistical applications which require that. 

Sometimes, the common estimator of covariance matrix - the sample 

covariance matrix- suffers from ill conditions and in many cases be invertible 

and without good qualities of estimator as dimensions of matrix go larger. 

Here, we view a shrinkage estimator for covariance matrix which is a 

combination of unbiased estimator and minimum variance estimator with 

different types of shrinkage factors parametric and non-parametric ones. 

Simulation study have been made by using Heterogeneous Autoregressive 

Process ARH(1) as a structure covariance matrix for population, moreover, 

a comparison has been made among different types of covariance estimators 

by using minimum mean square errors MMSE. 
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Introduction 

Estimating covariance matrix is a main task for many statistical applications and 

problems. Lately, estimating covariance matrix under high dimensions condition 

attracts many researchers to find new estimators or improve the old ones. In the 

cases; such as high dimensions the common estimator of covariance – The Sample 

Covariance Matrix- [7] 

 

𝑆 =
1

𝑛
∑ (𝑥𝑖 − 𝑥̅)𝑛

𝑖=1 (𝑥𝑖 − 𝑥̅)′                                                                   … (1) 

 

Where 𝑥𝑖 represents observation from p-dimensional distribution vector, and 

𝑥̅ is the p-dimensional mean vector. This estimator under high dimensions 

suffers from ill conditions such as the differences between the large and small 

eigenvalues grows to infinity and thus makes it a low quality estimator. 

High dimensions challenges give the researchers the intensive interest to 

develop new techniques to estimate the covariance matrix such as robust and 

shrinkage and nonparametric estimators. Shrinkage estimation for covariance 

matrix was first preseted by [9]Stein (1956) and then it was improved by many 

other authors such as [1]Bai and Yin (1993) , [2]Bickel and Levina (2008), 

[8]Ledoit and Wolf (2004) and [10]Touloumis (2014). 

 

Shrinkage Estimator 

A common improve for Stein type estimator under high dimensions condition 

presented by [4]Efron (1975) and [5] Efron and Morris (1975) which describe 

the shrinkage estimator as a linear combination between unbiased estimator 

with another estimator of minimum variance. 

 

Σ̂ = (1 − 𝜆)𝑆 + 𝜆𝑇                                                                                      .. (2)  

 

Where Σ̂  is the shrinkage estimator for covariance matrix, and 𝜆 is the 

shrinkage intensity, and T is the shrinkage target 𝑇 = 𝜇𝐼𝑝 =
𝑡𝑟(Σ)

𝑝
 . The 

theoretical idea of shrinkage technique is to shrink the eigenvalues of S to the 

eigenvalues of T . The problem of estimating  is to choose  shrinkage intensity 

𝜆 ∈ (0,1)which minimizes risk function 𝐸 {‖Σ̂ − Σ‖
𝐹

2
} = 𝑡𝑟(Σ̂ − Σ)2  
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which is a quadratic Frobenius distance. [8]Lediot and Wolf present shrinkage 

intensity by rewriting the risk function as following:- 

 

 

𝐸 {‖Σ̂ − Σ‖
𝐹

2
} = 𝐸{‖(1 − 𝜆)𝑆 + 𝜆𝑇 − Σ‖𝐹

2 }  

                        = 𝜆2𝐸{‖Σ − T‖𝐹
2 } + (1 − 𝜆)2𝐸{‖𝑆 − Σ‖𝐹

2 } 

 

And by increasing the matrix dimensions 𝐸(𝑆) = Σ and by take the derivative 

to 𝜆 and make it equal to zero, as following:- 

 

2𝜆𝐸{‖𝛴 − 𝑇‖𝐹
2 } − 2(1 − 𝜆)𝐸{‖𝑆 − 𝛴‖𝐹

2 } 

 

That will lead to  

 

𝜆 =
𝐸{‖𝑆 − 𝛴‖𝐹

2 }

𝐸{‖𝑆 − 𝛴‖𝐹
2 } + 𝐸{‖𝛴 − 𝑇‖𝐹

2 }
 

 

[8]Lediot and wolf presented some explanation for the value of the 

denominator as following:-  

 

𝐸{‖𝑆 − 𝑇‖𝐹
2 } = 𝐸{‖𝑆 − 𝛴 + Σ − 𝑇‖𝐹

2 }  

                       =  𝐸{‖𝑆 − 𝛴‖𝐹
2 } + 𝐸{‖𝛴 − 𝑇‖𝐹

2 } + 2〈𝐸[𝑆 − Σ], Σ − 𝑇〉 
 

Recalling that 𝐸(𝑆) = Σ then the last term in the above equation will be equal 

to zero thus 

 

𝐸{‖𝑆 − 𝑇‖𝐹
2 } =  𝐸{‖𝑆 − 𝛴‖𝐹

2 } + 𝐸{‖𝛴 − 𝑇‖𝐹
2 }  

 

Hence,the shrinkage intensity will be 

 

𝜆 =
𝐸{‖𝑆−𝛴‖𝐹

2 }

𝐸{‖𝑆−𝑇‖𝐹
2 }

                                                                                         … (3) 
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Hence, the shrinkage intensity selection is an important part of covariance 

matrix estimation therefore many authors change the shrinkage target matrix 

to improve shrinkage estimators in case of large dimensions. 

 

Fisher and Sun Estimator 

This parametric estimator was presented by [6]Fisher and Sun which 

depended on [7]Ledoit and Wolf definition of shrinkage intensity in equation  

(3) but first let us recall some basic definitions. 

 

𝐸{𝑇𝑟(𝑆)} = 𝑇𝑟(Σ)  

𝐸{𝑇𝑟(𝑆2)} =
𝑛+1

𝑛
𝑇𝑟(Σ2) +

1

𝑛
𝑇𝑟2(Σ)                                             … (4) 

𝐸{𝑇𝑟2(𝑆)} = 𝑇𝑟2(Σ) +
2

𝑛
𝑇𝑟(𝑆2) 

 

By expanding the numerator in (3) and using results in equations (4) we have 

 

𝐸{‖𝑆 − Σ‖𝐹
2 } = 𝐸{‖𝑆‖𝐹

2 } − 2𝐸{〈𝑆, Σ〉} +
𝑇𝑟(Σ2)

𝑝
 

                      =
𝑛+1

𝑛𝑝
𝑇𝑟(Σ2) +

1

𝑛𝑝
𝑇𝑟2(Σ) −

2

𝑝
𝑇𝑟(Σ2) +

1

𝑝
𝑇𝑟(Σ2) 

 

For making things simpler, we use 𝑏𝑗 =
1

𝑝
𝑇𝑟(Σ𝑗) 

 

                     =
𝑛+1

𝑛
𝑏2 +

𝑝

𝑛
𝑏1

2 − 2𝑏2 + 𝑏2 

                     =
1

𝑛
𝑏2 +

𝑝

𝑛
𝑏1

2 

 

And by expanding the denominator in (3) we get:- 

 

𝐸{‖𝑆 − 𝑇‖𝐹
2 } = 𝐸{‖𝑆‖𝐹

2 } − 2𝜇𝐸{〈𝑆, I〉} + 𝜇2‖𝐼‖2 

                      =
𝑛+1

𝑛𝑝
𝑇𝑟(Σ2) +

1

𝑛𝑝
𝑇𝑟2(Σ) −

2𝜇

𝑝
𝑇𝑟(Σ) + 𝑏1

2 

                      =
𝑛+1

𝑛
𝑏2 +

𝑝

𝑛
𝑏1

2 − 2𝑏1
2 + 𝑏1

2 

                      =
𝑛+1

𝑛
𝑏2 +

𝑝−𝑛

𝑛
𝑏1

2 
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Then, the Fisher and Sun shrinkage intensity and covariance shrinkage 

estimator will be:-  

 

𝜆𝐹𝑆 =
1

𝑛
𝑏2+

𝑝

𝑛
𝑏1

2

𝑛+1

𝑛
𝑏2+

𝑝−𝑛

𝑛
𝑏1

2
                                                                                ...  (5) 

 

Σ̂𝐹𝑆 =(1-𝜆𝐹𝑆)𝑆 + 𝜆𝐹𝑆𝑇                                                                        … (6) 

 

And by changing the shrinkage target 𝑇 = 𝐼 the denominator of the shrinkage 

intensity in (3) will expand like 

 

𝐸{‖𝑆 − 𝐼‖𝐹
2 } = 𝐸{‖𝑆‖𝐹

2 } − 2𝐸{〈𝑆, 𝐼〉} + ‖𝐼‖𝐹
2  

                      =
𝑛+1

𝑛𝑝
𝑇𝑟(Σ2) +

1

𝑛𝑝
𝑇𝑟2(Σ) −

2

𝑝
𝑇𝑟(Σ) + 1  

                      =
𝑛+1

𝑛
𝑏2 +

𝑝

𝑛
𝑏1

2 − 2𝑏1 + 1 

 

Then in this case the Fisher and Sun shrinkage intensity and covariance 

shrinkage estimator will be 

 

𝜆𝐹𝑆2 =
1

𝑛
𝑏2+

𝑝

𝑛
𝑏1

2

𝑛+1

𝑛
𝑏2+

𝑝

𝑛
𝑏1

2−2𝑏1+1
                                                                   … (7) 

 

Σ̂𝐹𝑆2 =(1-𝜆𝐹𝑆2)𝑆 + 𝜆𝐹𝑆2𝐼                                                                … (8) 

 

 

Nonparametric Shrinkage Estimator 

Under the large dimensions of the covariance matrix [10]Touloumis presented 

a nonparametric shrinkage estimator improving Stien type of shrinkage 

estimators. In the parametric estimation the expanding of the numerator and 

the denominator of the shrinkage intensity in equation (3) depending on the 

multivariate normal distribution assumption, so here a new estimator has been 

presented according to the following nonparametric model. 

Let 𝑋, 𝑋2, … . . 𝑋𝑛 be a p-dimensional random vectors and  

 

𝑋𝑖 = Σ
1

2𝑍𝑖 + 𝜇                                                                                   … (9) 
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Where Σ = 𝑐𝑜𝑣[𝑋𝑖] = Σ
1

2Σ
1

2  is a 𝑝 × 𝑝 dimensional matrix and 𝑍𝑖 be p-dimensional 

random vectors and instead of putting a distributional assumption here we use 

restrictions on 𝑍𝑖 concerning with moments. Let 𝑍𝑖𝑏 be the ibth random variable in 

𝑍𝑖 with 𝐸[𝑍𝑖𝑏] = 0 and 𝐸[𝑍𝑖𝑏
2] = 1 and let 𝐸[𝑍𝑖𝑏

4] = 3 + 𝐺 where −2 < 𝐺 < ∞ . 

Here the nonparametric model in equation (9) include p-dimensional multivariate 

normal distribution in 𝑍𝑖 so G  can be used as a measure of departure from the fourth 

moment of 𝑍𝑖  to the multivariate normal distribution. 

The expanding of the numerator and denominator in equation (3) will be according 

to the nonparametric model in equation (9) the author has put some basic definitions 

according to the nonparametric model as following:- 

 

𝐸{𝑇𝑟(𝑆)} = 𝑇𝑟(Σ)  

𝐸{𝑇𝑟(𝑆2)} =
𝑛

𝑛−1
𝑇𝑟(Σ2) +

1

𝑛−1
𝑇𝑟2(Σ) +

𝐺

𝑛−1
𝑇𝑟(𝐷Σ

2)                               … (10) 

𝐸{𝑇𝑟2(𝑆)} = 𝑇𝑟2(Σ) +
2

𝑛−1
𝑇𝑟(Σ2) +

𝐺

𝑛−1
𝑇𝑟(𝐷Σ

2)  

 

Where 𝐷Σ  is the diagonal matrix of eigenvalues of Σ then by using results in 

equations (10), the shrinkage intensity in equation (3) could expand to be  

 

𝜆𝑁𝐵 =
𝑇𝑟(Σ2)+𝑇𝑟2(Σ)+𝐺 𝑇𝑟(𝐷Σ

2)

𝑛 𝑇𝑟(Σ2)+
𝑝−𝑛+1

𝑝
𝑇𝑟2(Σ)

                                                                    … (11) 

 

The nonparametric shrinkage estimator for covariance matrix will be  

 

Σ̂𝑁𝐵 = (1 − 𝜆𝑁𝐵)𝑆 + 𝜆𝑁𝐵𝑇                                                                     … (12) 
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Simulation Study 

We present here a simulation by using 𝑝 = 50 and different sample sizes and we use 

Heterogeneous Autoregressive Process from the first order ARH(1) [] to generate  

covariance matrix for population  𝜎𝑖𝜎𝑗𝜌|𝑖−𝑗| = Σ where 𝜎𝑖𝜎𝑗 will be generated from 

standard normal distribution and 𝜌 ∈ (0,1) is the autocorrelation factor We suggest 

two values for the autocorrelation factor 0.35 , 0.75 and make comparison among 

different estimators of the covariance matrix depending on the risk function or the 

quadratic frobenius distance to be the Minimum mean Square Error in the form [6] 

𝑀𝑀𝑆𝐸 = 𝑇𝑟(Σ̂ − Σ)
2
 by using MATLAB we replicate the experiment 1000 times.  

 

                                Figure (1)  MMSE for the Estimators 𝜌 = 0.35 
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n FS1 Nonparametric FS2 MLE 
5 10.8499 85.1117 10.5029 347.3563 

10 10.8499 46.7562 10.1697 169.3461 

15 10.8499 31.6614 9.8723 109.2322 

20 10.8499 26.5375 9.5301 84.0571 

25 10.8499 21.7175 9.2910 66.1971 

30 10.6134 18.5234 9.0581 54.5597 

35 9.8862 17.1506 8.7924 47.5355 

40 9.3673 15.2480 8.5870 41.0693 

                 Table (1) the values of MMSE for estimators 𝜌 = 0.35  

 

  

                                   Figure (2) MMSE for the Estimators 𝜌 = 0.75 

 

n FS1 Nonparametric FS2 MLE 
5 82.2657 127.0119 76.7242 346.7863 

10 62.7013 81.3294 61.8817 174.7821 

15 54.8423 63.2621 54.6135 113.7959 

20 46.0324 52.6706 45.9980 88.5948 

25 39.6482 42.7299 39.5659 66.0964 

30 37.0793 39.0999 37.0300 56.0535 

35 31.9125 34.7397 31.9325 51.0080 

40 29.8318 31.4532 29.8279 43.2726 

                         Table (2) the values of MMSE for estimators 𝜌 = 0.75 
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Conclusions 

From simulation study in Table 1,2 We can make conclusions that when sample size 

is very small comparing to matrix dimensions, Fisher and Sun estimators were the 

best to estimate covariance matrix. And when sample size be close to the matrix 

dimension, We can notice that the nonparametric estimator work fine and be as good 

as Fisher and Sun Estimators, while MLE estimator has no good performance at all. 
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