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Abstract 

Covariance matrix estimation is a very important process for many 

multivariate applications like canonical analysis and multivariate 

hypotheses testing. Many data conditions require unusual estimation for 

covariance matrix that be different from the sample covariance matrix 

because the last (latter) is very weak under conditions like multicollinearity 

and high dimensions. Here, we introduce a comparison among three kinds 

of covariance matrix estimators under multicollinearity and high dimension 

conditions. Three estimators were submitted for covariance matrix: the 

Oracle estimator(OE), Chen estimator CE and sample covariance estimator 

MLE under Fractional Brownian motion FBM structure covariance matrix 

to simulate the multicollinearity and the high dimensions conditions. A 

comparison was made by using Frobenius distance as a measure of 

goodness for estimators.  
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Introduction 

The estimator of covariance matrix plays a main role for many statistical 

issues. But (However), estimating covariance matrix under conditions like 

multicollinearity and high dimensions get (attract) the attention for many 

researchers to find good estimators or develop the old ones. The sample 

Covariance Matrix- [7]  
 

  
 

 
∑ (    ̅) 

   (    ̅)                                                                    … (1) 
 

Where    represents a p-dimensional distribution vector, and  ̅ is the p-

dimensional mean vector. This estimator will be too weak and far away from 

the properties of good estimator such as the unbiasness and consistency and 

thus makes it not really good estimator. High dimension problems make 

researchers trying to develop new ways to estimate the covariance matrix 

such as robust, shrinkage and nonparametric estimators. The early Shrinkage 

estimator for covariance matrix was presented by [10]Stein (1956) and then 

developed by many authors such as [5]Efron (1975) , [1]Bai and Yin (1993) , 

[2]Bickel and Levina (2008), [8]Ledoit and Wolf (2004). A significant 

improvement to Stein estimator with high dimensions condition was 

presented by [5]Efron (1975) and [6] Efron and Morris (1975) as seen below/ 

as in the following equation:- 
 

 ̂  (   )                                                                                        .. (2)  
 

Where  ̂  represents shrinkage estimator for the covariance matrix, and 

  stands for shrinkage intensity, and F represents shrinkage target 

  
  ( )

 
 where p is the matrix dimension.  

The idea of shrinkage estimation is to make the eigenvalues of S close to the 

eigenvalues of F . To estimate the covariance matrix by shrinkage method we 

must  choose shrinkage intensity   (   ) which minimizes risk function 

 {‖ ̂   ‖
 

 
}    ( ̂   )  which is a Frobenius distance. [8]Lediot and 

Wolf present shrinkage intensity as in the following equation:- 



203 
 

 

 {‖ ̂   ‖
 

 
}   *‖(   )      ‖ 

 +  

                            *‖   ‖ 
 +  (   )  *‖   ‖ 

 + 
 

By increasing the matrix dimensions, the authors assume   ( )    , and by 

taking  the derivative to   and equalize it to zero[8], as in the following:- 
 

   *‖   ‖ 
 +   (   ) *‖   ‖ 

 + 
 

That will lead to  

 

  
 *‖   ‖ 

 +

 *‖   ‖ 
 +   *‖   ‖ 

 +
 

 

[8]Lediot and Wolf presented some definitions for the value of the 

denominator as in the following:-  
 

 *‖   ‖ 
 +   *‖       ‖ 

 +  

                          *‖   ‖ 
 +   *‖   ‖ 

 +   〈 (   ) (   )〉 
 

Recalling the assumption   ( )    then the last term will be equal to zero 

thus (as shown below):- 

 

 *‖   ‖ 
 +    *‖   ‖ 

 +   *‖   ‖ 
 +  

 

Hence, the shrinkage intensity will be 

 

  
 {‖   ‖ 

 }

 {‖   ‖ 
 }
                                                                                         … (3) 

 

Thus, choosing the shrinkage intensity is a main part to estimate the 

covariance matrix, this is the reason why many researchers introduce many 

estimates for shrinkage intensity with huge collections of shrinkage target 

matrices. 
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Oracle Estimator 

This nonlinear estimator was presented by [8]Lediot& Wolf. It is an 

extension for the shrinkage intensity in (2) which restricts the risk function so 

if we substitute equation (2) inside the risk function as in the following 

equation:- 

 

 {‖ ̂   ‖
 

 
}   *‖(   )      ‖ 

 + 

                             *‖(   )   (   )‖ 
 + 

                         *‖   ‖ 
 +     *‖〈(   ) (   )〉‖ 

 + 

    {‖ ̂   ‖
 

 
} 

 

And by taking derivative with respect to U and equalize to zero we get; - 

 

   {‖ ̂   ‖
 

 
}    *‖〈(   ) (   )〉‖ 

 +    

  
 {‖〈(   ) (   )〉‖ 

 }

 {‖ ̂  ‖
 

 
}

   

 

Then by defining the risk function, we get: - 

 

 

  
 *  ((   )(   ))+

 *  (   ) +
  

 

This estimation of the Shrinkage Intensity is an expectation, we can simplify 

it by using the following expectation results [7]. 

 

 *  ( )+    ( )  

 

 *  (  )+  
   

 
  (  )  

 

 
   ( )                                             … (4) 

 *   ( )+     ( )  
 

 
  (  ) 

 

 

 



205 
 

Then we can expand the expectations in the shrinkage intensity estimation so 

we can get a simple formula for it 

As for the denominator, we get the following formula: - 

 

 

 {  ((   )(   ))}   

                                *  (  )+  
 *   ( )+

 
  *  (  )+  

  ( )

 
 *  ( )+ 

  

and as for the numerator, we get the following formula: -  

 

 *  (   ) +   *  (  )+    *  (  )+   *  (  )+ 

                               *  (  )+  
 *   ( )+

 
 

 

Therefore, by using the results of expectations in (4), we get the following 

equation: - 

 

    
(   

 ⁄ )  (  )    ( )

(     
 ⁄ )  (  ) (   

 ⁄ )   ( )
                                                         … (5) 

 

Hence, the Oracle estimator for the covariance matrix will be as the 

following  

 

 ̂   (     )                                                                             … 

(6) 

 

 

Chen Estimator 

This robust estimator for covariance matrix was presented by Chen [4] in 

case of high dimensions and under the assumptions of normal distribution, 

the author uses the Normalized Samples instead of real data directly 

    
  

‖  ‖ 
  then in that case the MLE estimator (Sample Covariance) of the 

covariance matrix will be like   
 

 
∑

     

      

 
     so here we have Chen 

estimator as follows. 
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   (    )                                                                                … (7) 

The    represents the Chen shrinkage intensity which minimizes the risk 

function as we derive it we substitute the result in (7) inside the risk function 

we get: 

 

 *‖    ‖ 
 +   *‖(    )       ‖ 

 +  
 

                           *‖(   )    (   )‖ 
 + 

                           *‖   ‖ 
 +      *〈(   ) (   )〉+   

                                 
  *‖   ‖ 

 + 
 

And by taking the first derivative and equalizing it to zero, we get the 

shrinkage intensity as in the following [4] 
 

   
 *  (  )+  *  (  )+  *  ( )+   ( )

 *  (  )+   *  ( )+  
     

 

Here, we have three expectations that determine the shrinkage intensity such 

as: E{tr(C
2
)}, ,E{tr(CΣ)}  and E{tr(C)} [4]. By using decomposition theories, 

Chen puts the values of those three expectations as in the following 
 

  *  (  )+  (  
 

 
 

 

 (   
 ⁄ )

)   (  )  
   ( )

 (   
 ⁄ )

 

  *  (  )+    (  ) 

  *  ( )+    ( ) 
 

consequently, the final form of the shrinkage intensity will be like: 
 

   
   (   

 ⁄ )  (  )

(        ) (     
(   )

 ⁄ )  (  )
                                                … (8) 

 

which minimizes the shrinkage estimator of covariance matrix in (7) 

 

Simulation Study 

In the following section, we make a comparison among three estimators of 

covariance matrix: the sample covariance estimator in (1) , the Oracle 

estimator in (6) and Chen estimator in (7) under quadratic risk function 
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  ( ̂   ) . Here, we select   to be the result of the increment fractional 

Brownian motion FBM as in the following [9]. 

 

    
 

 
,(|   |   )    |   |   (|   |   )  - 

 

As we can see in the above equation, h is Hurst parameter        . In 

this paper, we choose three values of h which is 0.5 for the normal case , 0.7 

for little value of autocorrelation and 0.9 for the higher case of 

autocorrelation condition and multi values of small sample sizes n and 

selected values as high dimensions p we select ( 10 , 20 ,30 ) as sample sizes 

and ( 50, 100 , 150) as covariance matrix dimensions and (0.5 , 0.7 , 0.9) as h 

value and calculate different matrix estimators as in (10 , (6) and (7) and 

replicate this experiment 1000 times by using MATLAB program.  

 

   Risk Function 

h p n MLE Oracle Chen 

0.5 

50 

10 3.0661 0.1877 0.4412 

20 0.5731 0.1000 0.1921 

30 0.2744 0.0558 0.1208 

100 

10 10.4785 0.2029 0.3662 

20 1.5288 0.0830 0.1964 

30 0.5620 0.0757 0.1327 

150 

10 24.1726 0.1496 0.4201 

20 3.3883 0.1179 0.2467 

30 0.9712 0.0747 0.1316 

0.7 

50 

10 25.3597 22.2345 22.9809 

20 21.2610 20.3385 20.9322 

30 19.4774 19.2392 19.4953 

100 

10 61.9029 51.6173 52.5846 

20 50.6852 48.5998 49.3020 

30 47.3779 46.7650 47.1682 

150 

10 106.1724 82.4768 83.3433 

20 82.3982 79.5426 80.0835 

30 78.0428 76.6464 76.1610 

0.9 50 

10 237.3167 206.6654 207.0329 

20 131.5094 119.4785 119.5319 

30 95.4083 87.2448 88.3404 
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100 

10 729.0392 641.4572 640.8629 

20 425.8982 394.1195 391.4799 

30 364.9119 328.8244 322.2903 

150 

10 1608.987 1423.265 1415.898 

20 1058.587 965.0074 964.045 

30 743.4043 679.6709 644.1907 

                    Values of risk function under different p and n 

  

 

 

Conclusions 

From the simulation study, we notice that in the normal circumstances, the 

Oracle estimator is the best estimator with least risk function value with 

h=0.5. 

And in the case of a weak autocorrelation condition  when h=0.7, we see that 

Oracle estimator is still better but  it makes strong competition with Chen 

estimator which gets close to Oracle estimator as p goes larger.  

In the case of high autocorrelation condition when h=0.9, we see  that Chen 

estimator is still the best estimator of covariance matrix as p goes larger 

This gives a) good evidence that robust estimators are better in the cases of 

higher autocorrelation and high dimensions conditions. 
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