Probability

Chapter 1 - Set theory
Chapter 2 - Counting techniques
Chapter 3 - Introduction to probability
Chapter 4 - Conditional probability and independence
Chapter 5 - Random variable
Chapter 6 - Some special discrete distribution
Chapter 7 - Some special continuous distribution
References

1. Probability theory and application (Dr. fayyadh Abdullah Ali)
2. سلسلة وملخصـات شوم في الاحتمالات

CH $1 \backslash$

SET THEORY

1. Set and Element:

Def: A set is any well-defined list or collection of objects and will by denoted by capital letters A, B, C, ...
The object comprising the set are called its element or member and will by lower case letter a, b, c, \ldots
The statement " x is an element of A " or " x belongs to A " is written $x \in A$.

There are essentially two ways to specify a particular set:

1. Listing method

If it is possible to list its elements, for example

- $A=\{1,3,5,7,9,10,14,20\}$

2. Rule method

State those properties which characterize the element in the set, for example

- $\mathrm{D}=\{x: x$ is an integer,$x>20\}$

Which reads " D is the set of x such that x is an integer and x is greater than 20"
$>$ We could not list all element of the set D although frequently we specify by writing.

- $\mathrm{D}=\{20,21,22,23, \ldots\}$

Observe that $90 \in D$; but $-17 \notin D, 30.5 \notin D$

- $\mathrm{M}=\{\mathrm{x}: \mathrm{x}$ is a letter in English alphabet, x is a vowel letter $\}$
- Let $\mathrm{B}=\left\{x: x^{2}-3 x+2=0\right\}, F=\{2,1\}, T=\left\{1,2,2, \frac{4}{2}, 1\right\}$ then $\mathrm{B}=\mathrm{F}=\mathrm{T}$ since B can by written as $\mathrm{B}=\{(x-1)(x-2)=0\}$ so $B=\{1,2\}$

Observe that a set dose not depend on the way which the elements are displayed. A set remain the same if its elements are repeated or rearranged.

N : represent the set of positive integer number ; $1,2,3,4,5,6, \ldots$
Z : represent the set of integer number; ...,-2,-1,0,1,2, \ldots
Q: represent the set of rational number
R : represent the set of real number

