Ex: A die is rolled and a coin is tossed, find the probability that the die shows an odd number and the coin shows a head.

Soll
Let H be the head and T be the tail of the coin. The sample space S is as follows

$$
\begin{gathered}
S=\{(1, \mathrm{H}),(2, \mathrm{H}),(3, \mathrm{H}),(4, \mathrm{H}),(5, \mathrm{H}),(6, \mathrm{H})(1, \mathrm{~T}),(2, \mathrm{~T}), \\
(3, \mathrm{~T})(4, \mathrm{~T}),(5, \mathrm{~T}),(6, \mathrm{~T})\}
\end{gathered}
$$

Let E be the event "the die shows an odd number and the coin shows a head". Event E may be described as follows
$E=\{(1, H),(3, H),(5, H)\}$
The probability $\mathrm{P}(\mathrm{E})$ is given by
$\mathrm{P}(\mathrm{E})=\mathrm{n}(\mathrm{E}) / \mathrm{n}(\mathrm{S})=3 / 12=1 / 4$

Ex: The blood groups of 200 people is distributed as follows: 50 have type A blood, 65 have B blood type, 70 have O blood type and 15 have type $A B$ blood. If a person from this group is selected at random, what is the probability that this person has O blood type? Sol\}

We construct a table of frequencies for the blood groups as follows

group	frequency
A	50
B	65
O	70
AB	15
	200

$$
\begin{aligned}
& \mathrm{E}=(\text { person has O blood type }) \\
& \qquad p(E)=\frac{70}{200}=0.35
\end{aligned}
$$

Ex: A problem is given to three students whose chances of solving it are $1 / 2,1 / 3$ and $1 / 4$ respectively. What is the probability that the problem will be solved?

Sol \backslash Let A, B, C be the respective events of solving the problem and A^{C}, B^{C}, C^{C} be the respective events of not solving the problem. Then A, B, C are independent event
$p($ the problem will be solved $)=1-p($ none solves the problem $)$

$$
\therefore p(\text { none solves the problem })=p\left(A^{c} \text { and } B^{c} \text { and } C^{c}\right)
$$

$$
p(A)=\frac{1}{2}, p(B)=\frac{1}{3}, p(C)=\frac{1}{4}
$$

$$
p\left(A^{c}\right)=\frac{1}{2}, p\left(B^{c}\right)=\frac{2}{3}, p\left(C^{c}\right)=\frac{3}{4}
$$

$\because \mathrm{A}, \mathrm{B}, \mathrm{C}$ are Independent

$$
\begin{gathered}
\begin{array}{c}
p\left(A^{c} \cap B^{c} \cap C^{c}\right)=p\left(A^{c}\right) * p\left(B^{c}\right) * p\left(C^{c}\right) \\
=\frac{1}{2} * \frac{2}{3} * \frac{3}{4}=\frac{1}{4}
\end{array} \\
p(\text { the problem will be solved })=1-\frac{1}{4}=\frac{3}{4}
\end{gathered}
$$

Ex: Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. What is the probability that the ticket drawn has a number which is a multiple of 3 or 5 ?

Sol \backslash Here, $S=\{1,2,3,4, \ldots ., 19,20\}$.
$E=$ event of getting a multiple of 3 or $5=\{3,6,9,12,15,18,5,10,20\}$.

$$
p(E)=\frac{n(E)}{n(S)}=\frac{9}{20}
$$

Ex: One card is drawn at random from a pack of 52 cards. What is the probability that the card drawn is a face card (Jack, Queen and King only)?

Sol \backslash Clearly, there are 52 cards, out of which there are 12 face cards.

$$
p(\text { getting a face card })=\frac{12}{52}=\frac{3}{13}
$$

Ex: Two cards are drawn together from a pack of 52 cards. The probability that one is a spade and one is a heart, is:

Sol \backslash Let S be the sample space.

Then, $n(S)=\binom{52}{2}=1326$.

Let $\mathrm{E}=$ event of getting 1 spade and 1 heart.

$$
p(E)=\frac{\binom{13}{1}\binom{13}{1}}{\binom{52}{2}}=\frac{169}{1326}
$$

Ex: From a pack of 52 cards, two cards are drawn together at random. What is the probability of both the cards being kings?

Sol \backslash Let S be the sample space Then, $n(S)=\binom{52}{2}=1326$.

Let $\mathrm{E}=$ event of getting 2 kings out of 4 .

$$
p(E)=\frac{\binom{4}{2}}{\binom{52}{2}}=\frac{6}{1326}
$$

Ex: Two brother X and Y appeared for an exam. The probability of selection of X is $1 / 7$ and that of B is $2 / 9$. Find the probability that both of them

Soll Let A be the event that X is selected and B is the event that Y is selected.

$$
p(A)=\frac{1}{7}, p(B)=\frac{2}{9}
$$

Let C be the event that both are selected.
$\mathrm{P}(\mathrm{C})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$ as A and B are independent events:

$$
=\frac{1}{7} * \frac{2}{9}=\frac{2}{63}
$$

Ex: In a simultaneous throw of pair of dice. Find the probability of getting the total more than 7 .

Soll Here $n(S)=(6 \times 6)=36$
Let $\mathrm{E}=$ event of getting a total more than 7
$\{(2,6),(3,5),(3,6),(4,4),(4,5),(4,6),(5,3),(5,4),(5,5),(5,6),(6,2),(6,3)$, $(6,4),(6,5),(6,6)\}$

Therefore $(E)=n(E) / n(S)=15 / 36=5 / 12$.

