## 2. Universal set, empty set:

Def: the number of all sets under investigation usually belong to some fixed large set called "Universal set". we will let the symbol (U) denoted (Universal set).
Def: the set with no element is called "empty set" or null set and denoted by $\emptyset$.
$\{x: 3 x=2, x$ is an integer $\} \varnothing$.
$\left\{x: x^{2}+1=0, x\right.$ is real $\} \varnothing$.

## 3. Subset

Def: if every element in a sat A is also an element in a set B, then A is called subset of B.
We also say that A contained in B or B contains A, this relationship is written $A \subset B$ or $B \supset A$.
If $A$ is not subset of $B$ (at least one element of $A$ does not belong to $B$ we write $A \not \subset B$ or $B \not \supset A$.
Ex: Concede the set $\mathrm{A}=\{1,3,5,7,9\}, \mathrm{B}=\{1,2,3,5\}, \mathrm{C}=\{1,5\}$ then $C \subset A$, $C \subset B$ but $B \not \subset A$.
Def: where $A \subset B$ but $A \neq B$ we say A is proper subset of B .
Ex: if $A=\{1,3\}, B=\{1,2,3\}, C=\{1,3,2\}$ then $A$ and $B$ are subset of $C$. but A proper subset of $C$. whereas $B$ is not proper subset of $C$.
Theorem:

- For every set, we have $\varnothing \subset A \subset U$.
- For every set, we have A is a subset of A.
- If $A \subset B$ and $B \subset C$ then $A \subset C$.
- $A=B$ if and only if $A \subset B$ and $B \subset A$.

Ex: if $A=\{1,3\}, B=\{1,2,3\}, C=\{1,3,2\}$ then $A$ and $B$ are subset of $C$ whereas $B$ is not proper subset of $C$.

## 4. Veen Diagram

a veen diagram is a pictorial representation of sets by set of points in a plan.

5. Set operator

1. The union of two sets A and B denoted by $(A \cup B)$ is the set of all elements which belong to A or belong to B

$$
A \cup B=\{x: x \in A \text { or } x \in B\}
$$

2. The intersection of two sets A and B denoted by $(A \cap B)$ is the set of elements which belong to both A and

$$
A \cap B=\{x: x \in A \text { and } x \in B\}
$$

- If $A \cap B=\emptyset$ then we say A and B are disjoint

3. The relative complement of a set B with respect to A or simply the difference of A and B denoted by $(A \backslash B)$ is the set of elements which belong to A but which do not belong to B .

$$
A \backslash B=\{x: x \in A \text { and } x \notin B\}
$$

4. The complement of a set A denoted by $A^{C}$ is the set of elements


$$
A^{c}=\{x: x \in U \text { and } x \notin A\}
$$

Ex:
Let $A=\{1,2,3,4\}, B=\{3,4,5,6\}$, where $U=\{1,2,3, \ldots\}$
Then

$$
\begin{aligned}
& A \cap B=\{3,4\} \\
& A \cup B=\{1,2,3,4,5,6\} \\
& A \backslash B=\{1,2\} \\
& A^{c}=\{5,6,7, \ldots\} \\
& B \backslash A=\{5,6\} \\
& (A \backslash B)^{c} \cap(B \backslash A)=\{5,6\} \\
& (A \backslash B)^{c} \backslash(B \cap A)^{c}=? ? ?
\end{aligned}
$$



