2. Universal set, empty set:

<u>Def</u>: the number of all sets under investigation usually belong to some fixed large set called "Universal set". we will let the symbol (U) denoted (Universal set).

<u>Def</u>: the set with no element is called "empty set" or null set and denoted by \emptyset .

 $\{x: 3x = 2, x \text{ is an integer}\} \emptyset.$ $\{x: x^2 + 1 = 0, x \text{ is real}\} \emptyset.$

3. Subset

<u>Def</u>: if every element in a sat A is also an element in a set B, then A is called subset of B.

We also say that A contained in B or B contains A, this relationship is written $A \subset B$ or $B \supset A$.

If A is not subset of B (at least one element of A does not belong to B we write $A \not\subset B$ or $B \not\supset A$.

Ex: Concede the set A= {1,3,5,7,9}, B= {1,2,3,5}, C= {1,5} then $C \subset A$, $C \subset B$ but $B \not\subset A$.

Def: where $A \subset B$ but $A \neq B$ we say A is proper subset of B.

Ex: if $A = \{1,3\}$, $B = \{1,2,3\}$, $C = \{1,3,2\}$ then A and B are subset of C. but A proper subset of C. whereas B is not proper subset of C.

Theorem:

- For every set, we have $\emptyset \subset A \subset U$.
- For every set, we have A is a subset of A.
- If $A \subset B$ and $B \subset C$ then $A \subset C$.
- A = B if and only if $A \subset B$ and $B \subset A$.

Ex: if $A = \{1,3\}$, $B = \{1,2,3\}$, $C = \{1,3,2\}$ then A and B are subset of C whereas B is not proper subset of C.

4. Veen Diagram

a veen diagram is a pictorial representation of sets by set of points in a plan.

5. Set operator

1. The union of two sets A and B denoted by $(A \cup B)$ is the set of all elements which belong to A or belong to B

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

2. The intersection of two sets A and B denoted by $(A \cap B)$ is the set of elements which belong to both A and

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

- If $A \cap B = \emptyset$ then we say A and B are disjoint
- 3. The relative complement of a set B with respect to A or simply the difference of A and B denoted by $(A \setminus B)$ is the set of elements which belong to A <u>but</u> which do not belong to B.

$$A \setminus B = \{x : x \in A \text{ and } x \notin B\}$$

4. The complement of a set A denoted by A^c is the set of elements which belong to U but which do not belong to A.

$$A^c = \{x : x \in U \text{ and } x \notin A\}$$

Ex:

Let
$$A = \{1,2,3,4\}$$
, $B = \{3,4,5,6\}$, where $U = \{1,2,3,...\}$

Then

$$A \cap B = \{3,4\}$$

$$A \cup B = \{1,2,3,4,5,6\}$$

$$A \setminus B = \{1,2\}$$

$$A^c = \{5,6,7,...\}$$

$$B \setminus A = \{5,6\}$$

$$(A \setminus B)^c \cap (B \setminus A) = \{5,6\}$$

$$(A \setminus B)^c \setminus (B \cap A)^c = ???$$