Ex: The probability of mutually exclusive events A and B are related as $p(B)=\{p(A)\}^{2}$ and $A \cup B=S$.

Find $p(A)$ and show that $p(A)=p\left(B^{c}\right)$.
Soll let $p(A)=p$

$$
\begin{gathered}
A \cup B=S \\
p(A \cup B)=p(S) \Longrightarrow p(A)+p(B)=p(S) \\
p+p^{2}=1 \Longrightarrow p^{2}+p-1=0 \\
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm \sqrt{1-4(1)(-1)}}{2(1)}=\frac{-1 \pm \sqrt{5}}{2} \\
\therefore t_{1}=\frac{-1+\sqrt{5}}{2}, t_{2}=\frac{-1-\sqrt{5}}{2}
\end{gathered}
$$

- We neglect t_{2} ???

$$
\begin{gathered}
\therefore p(A)=t_{1}=\frac{-1+\sqrt{5}}{2} \\
p(B)=\{p(A)\}^{2} \Rightarrow\left(\frac{-1+\sqrt{5}}{2}\right)^{2} \\
p(B)=\frac{(-1+\sqrt{5})^{2}}{4}=\frac{(1-2 \sqrt{5}+5)}{4}=\frac{6-2 \sqrt{5}}{4}=\frac{2(3-\sqrt{5})}{4} \\
p(B)=\frac{3-\sqrt{5}}{2} \\
p\left(B^{c}\right)=1-p(B)=1-\frac{3-\sqrt{5}}{2}=\frac{2-(3-\sqrt{5})}{2}=\frac{2-3+\sqrt{5}}{2} \\
p\left(B^{c}\right)=\frac{-1+\sqrt{5}}{2}
\end{gathered}
$$

$\therefore p(A)=p\left(B^{c}\right)$
Ex: 3 horses A, B and C are a race A twice as likely to win as B and B is twice as likely to win as C what are their respective the probability of win?

Son let the prob. C winc $=p$
\therefore prob. B winc $=2 p$
\therefore prob. A winc $=4 p$

$$
\begin{gathered}
p+2 p+4 p=1 \\
7 p=1 \Rightarrow p=\frac{1}{7} \\
\therefore p(C)=\frac{1}{7}, p(B)=\frac{2}{7}, p(A)=\frac{4}{7}
\end{gathered}
$$

Ex: Let a cared be selected at random from playing cards

1. What is the prob. that the card is spade?
2. What is the prob. that the card is face?
3. What is the prob. that the card is spade \&face?

Soll

1. $p($ cards is spades $)=\frac{\binom{13}{1}}{\binom{52}{1}}=\frac{13}{52}$
2. $p($ cards is face $)=\frac{\binom{12}{1}}{\binom{52}{1}}=\frac{12}{52}$

name	shape
Spades	
Diamonds	
Hearts	
Clubs	

3. $p($ cards is spade \&face $)=\frac{\binom{3}{1}}{\binom{52}{1}}=\frac{3}{52}$

Ex: two cards be selected at random from playing cards find the probability that

1. Both two cards are Spades?
2. One of them is Spades and the other one is Hearts?

Soll

1. Let $\mathrm{A}=$ Both two cards are Spades

$$
p(A)=\frac{\binom{13}{2}}{\binom{52}{2}}=\frac{78}{1326}
$$

2. Let $\mathrm{B}=$ One of them is Spades and the other one is Hearts

$$
p(B)=\frac{\binom{13}{1}\binom{13}{1}}{\binom{52}{2}}=\frac{169}{1326}
$$

Ex: Three light bulbs were randomly selected from 15 light bulbs, 5 of which were defective. Find the probability

1. all of them are non-defective?
2. Just one defective?
3. at least one defective?
4. let $\mathrm{A}=($ all bulbs non defective)

$$
p(A)=\frac{\binom{10}{3}}{\binom{15}{3}}=\frac{120}{455}
$$

2. let $\mathrm{A}=($ Just one bulb defective)

$$
p(A)=\frac{\binom{5}{1}\binom{10}{2}}{\binom{15}{3}}=\frac{5 * 45}{455}=\frac{225}{455}
$$

3. let $\mathrm{A}=$ (at least one defective)

$$
\begin{gathered}
p(A)=1-p(\text { all bulbs non defective }) \\
=1-\frac{120}{455}=\frac{67}{91}
\end{gathered}
$$

