Ex: Each coefficient in equation $ax^2 + bx + c = 0$ is obtained by throwing a fair die. Find the probability that the equation has real roots? Sol\

To solve the equation $ax^2 + bx + c = 0$ we use

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $b^2 - 4ac \ge 0$ the equation has real root $b^2 - 4ac < 0$ the equation has imaginary root

a	c	4ac	$b^2 \ge 4ac$	Number of
	-			cases
1	1	4	2,3,4,5,6	5
1	2	8	3,4,5,6	4
1	3	12	4,5,6	3
1	4	16	4,5,6	3
1	5	20	5,6	2
1	6	24	5,6	2
2	1	8	3,4,5,6	4
2	2	16	4,5,6	3
2	3	24	5,6	2
2	4	32	6	1
3	1	12	4,5,6	3
3	2	24	5,6	2
3	3	36	6	1
4	1	16	4,5,6	3
4	2	32	6	1
5	1	20	5,6	2
6	1	24	5,6	2
sum				43

Pr {probability that the equation has real roots} = $\frac{43}{6*6*6} = \frac{43}{216}$

Ex: Six men stand in one of the rooms with their wife's

- 1) If two of them are chosen randomly, find the probability that
 - 1. they are married
 - 2. one of them is a man and the other is a woman
- 2) If four of them choose it randomly, find the probability that he will choose
 - 1. Two men and their wife's
 - 2. exactly one married couple is among of the 4

Sol\

1-1
$$Pr(they\ are\ married) = \frac{\binom{6}{1}}{\binom{12}{2}} = \frac{6}{66} = \frac{1}{11}$$

1-2
$$pr(one \ male \ and \ one \ femail) = \frac{\binom{6}{1}\binom{6}{1}}{\binom{12}{2}} = \frac{6*6}{66} = \frac{36}{66}$$

2-1
$$pr(two\ man\ and\ ther\ wife) = \frac{\binom{6}{2}}{\binom{12}{4}} = \frac{15}{495}$$

2-2
$$pr(exactly one married couple is among of 4) = \frac{\binom{6}{1}\binom{2}{1}\binom{2}{1}\binom{5}{2}}{\binom{12}{4}} = \frac{240}{495}$$