Ex: Each coefficient in equation $a x^{2}+b x+c=0$ is obtained by throwing a fair die. Find the probability that the equation has real roots?

Sol\}
To solve the equation $a x^{2}+b x+c=0$ we use

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{gathered}
b^{2}-4 a c \geq 0 \text { the equation has real root } \\
b^{2}-4 a c<0 \text { the equation has imaginary root }
\end{gathered}
$$

a	c	$4 a c$	$b^{2} \geq 4 a c$	Number of cases
1	1	4	$2,3,4,5,6$	5
1	2	8	$3,4,5,6$	4
1	3	12	$4,5,6$	3
1	4	16	$4,5,6$	3
1	5	20	5,6	2
1	6	24	5,6	2
2	1	8	$3,4,5,6$	4
2	2	16	$4,5,6$	3
2	3	24	5,6	2
2	4	32	6	1
3	1	12	$4,5,6$	3
3	2	24	5,6	2
3	3	36	6	1
4	1	16	$4,5,6$	3
4	2	32	6	1
5	1	20	5,6	2
6	1	24	5,6	2
sum				43

$\operatorname{Pr}\{$ probability that the equation has real roots $\}=\frac{43}{6 * 6 * 6}=\frac{43}{216}$

Ex: Six men stand in one of the rooms with their wife's

1) If two of them are chosen randomly, find the probability that
1. they are married
2. one of them is a man and the other is a woman
2) If four of them choose it randomly, find the probability that he will choose
1. Two men and their wife's
2. exactly one married couple is among of the 4

Sol \backslash
1-1 $\quad \operatorname{Pr}($ they are married $)=\frac{\binom{6}{1}}{\binom{12}{2}}=\frac{6}{66}=\frac{1}{11}$
1-2 $\operatorname{pr}($ one male and one femail $)=\frac{\binom{6}{1}\binom{6}{1}}{\binom{12}{2}}=\frac{6 * 6}{66}=\frac{36}{66}$
2-1 $\quad \operatorname{pr}($ two man and ther wife $)=\frac{\binom{6}{2}}{\binom{12}{4}}=\frac{15}{495}$
2-2 $\quad \operatorname{pr}($ exactly one married couple is among of 4$)=$ $\frac{\binom{6}{1}\binom{2}{1}\binom{2}{1}\binom{5}{2}}{\binom{12}{4}}=\frac{240}{495}$

